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Hard-spin mean-field theory of a three-dimensional stacked-triangular-lattice
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Closed form solutions to the hard-spin mean-field equations are constructed for the three-
dimensional stacked triangular system. The phase diagram of this system is examined. The free
energy of the system is calculated within the same approximation to identify the thermodynamically
stable states in the phase diagram. A second-order phase transition line is found to exist for very
small values of the external field. Our results display the details of the structure of the multicritical
region within the hard-spin mean-field theory approximation.

PACS number(s): 05.50.+q, 75.25.+z, 64.60.Cn, 75.50.Lk

I. INTRODUCTION

Hard-spin mean-field theory has been developed re-
cently [1] to improve upon the conventional mean-field
theory. It was first applied to frustrated systems by Netz
and Berker (2], and self-consistent equations were solved
by a Monte Carlo implementation. Netz and Berker have
also presented an iterative solution of hard-spin mean-
field equations for three-dimensional stacked triangular
system without a magnetic field [3]. The method is very
successful in its application to frustrated systems.

The stacked-triangular-lattice antiferromagnetic Ising
model has been studied by Monte Carlo [4] and renormal-
ization group methods [5]. In the present work, closed
form solutions to the hard-spin mean-field equations are
constructed for the three-dimensional stacked triangular
system with or without a finite magnetic field. This
method enables a solution to the hard-spin mean-field
equations with numerically minimum error. A second-
order phase transition line is found to exist for very small
values of the external field. The detailed structure of the
multicritical region is also presented. Hard-spin mean-
field theory has proven to be as effective as the other
successful methods for this system.

II. MODEL

The Hamiltonian H of the system for ferromagnetic
coupling between layers may be written as

—BH = —JY S:S; + J' Y SiS; + b)Y Si, (2.1)
(4,3) (4,4) i

where 3 = 1/kpt (with kg the Boltzmann constant and

t the temperature), J > 0 is the antiferromagnetic cou-

pling constant between nearest-neighbor spins in a layer

corresponding to a triangular lattice, J' > 0 is the fer-

romagnetic coupling constant between nearest-neighbor

spins in neighboring layers, h is the scaled external mag-
J

netic field, and S; = +1 are the classical spin variables.
Based on the scaling (by kpt) apparent in Eq. (2.1),
one may parametrize the equation of state of the system
through a unitless temperature variable T = 1/J and the
temperature independent variables J'/J and h/J. The
summation in Eq. (2.1) then runs over a set of spins con-
sistent with the definitions of these interaction constants.

In the system under comnsideration, three sublattices
are expected to have different and uniform magnetiza-
tions. In hard-spin mean-field theory, the average of
the hyperbolic tangent of effective field is estimated by
a weighted average of this quantity. The weights are
given by the probabilities for the configurations of the
hard spins. A detailed description of the method may
be found in the Ref. [1]. The symmetry of the system
is preserved in the approximation by considering three
nearest-neighbor spins on a layer exactly and by includ-
ing the effects of all other neighboring spins through the
effective fields corresponding to the hard-spin approxi-
mation.

Because of the summation over the three spins which
belong to three sublattices, the symmetry in the expo-
nential function is retained. A sum over all configura-
tions of the three central spins and their “hard-spin”
neighbors must be carried out in order to obtain the av-
erage. Hard-spin mean-field equations for the stacked-
triangular-lattice case will be (there are three coupled
equation for mq,mz, and ms3)

Z 1+ o1m;) (1 4+ oamy) %

mi,2,3 = 2 2
01,02,"*°,015
(1 + 0'15m,-)
><~.—
2

D s, S1,2,3exp(—BH[S{1,2,3}, i)
1,2,3)

“ﬁH[S{Lz,s},Uz‘] = —J(01+ 02+ 03+ 04)S1 — J(04 + 05 + 06 + 07)S2
—J(O’7 -+ og + o9 + 0’1)53 — J(5152 - 5253 — 5351)

X 2.2
2S00 XP(—BH[S(1,2,3},03]) (22)
The explicit form of the Hamiltonian is
+J’(0’10 + 0’11)51 + J’(O’lz -+ 0'13)S2 + J’((714 + 0'15)53 =+ h(Sl —+ Sg + 53) 5 (23)
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where sites ¢ = 1,2,3 form an elementary triangle of
the lattice and o,,03,...,015 represent the 15 hard-
spin sites neighboring this elementary triangle. Spins
01,02,...,09 are antiferromagnetically coupled to an el-
ementary triangle in the lattice (on the same layer) and
spins 019,011,---,015 are neighbors to the elementary
triangle which are ferromagnetically coupled to it (on
neighboring layers).

Free energy was calculated within the same approxima-
tion as in Ref. [6] in order to identify the stable phases
of the system. The derivative of free energy with respect
to B is evaluated using the hard-spin approximation

of

o
36 = —8_ﬁln§:eXP —BH = (H) ~ (H)usmr , (2.4)

where the angular brackets indicate ensemble averaging
and the subscript HSMF indicates the hard-spin mean-
field approximation. This quantity is then integrated
with respect to (3, starting from a high temperature refer-
ence point, to the point of interest on the phase diagram,
in order to determine the free energy at this point. The
resultant free energy is used to differentiate the stable
phase with zero magnetic field.

h/J (UOD-UUD CURVE)
.002
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III. CALCULATIONS

The coupled equations given in Eq. (2.2) are solved
numerically. In general, it is possible to find unstable and
indeed unphysical solutions to these nonlinear equations.

A Landau-Ginzburg mean-field theory argument im-
plies that two different ordered phases are possibly sta-
ble in this system. Two of the three sublattice magne-
tizations may be in the same direction with the same
magnitude and the third one in the opposite direction
with a different magnitude (hereafter referred to as the
“up-up-down” phase). Alternatively, one of the sublat-
tice magnetizations could be zero and the others in the
two opposite directions (hereafter referred to as the “up-
zero-down” phase). But a strong magnetic field can de-
stroy these phases and all magnetizations will be in the
same direction as the magnetic field (this is essentially
the paramagnetic phase referred to as the “up-up-up”
phase).

The thermodynamic degrees of freedom of the system
are the external magnetic field and temperature, which
define the magnetization phase diagram. The differenti-
ation between stable and unstable phases may be done
through a free energy comparison.

All stable phases are shown in Fig. 1. A similar dia-
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FIG. 1. Phase diagram of the three-dimensional stacked-triangular-lattice system. The sublattice magnetizations (i.e.,
phases) are abbreviated as follows: U, up; 0, zero; and D, down. (a) The first-order phase transition boundary. All points
are calculated as shown in Fig. 2, which corresponds to the T = 3 case, shown with a dotted line. (b) The second-order
phase transition boundary. The calculation is done as shown in Fig. 3. The up-zero-down phase continuously changes to the
up-up-down phase. The boundary meets the zero-field line at zero temperature. (c) Region near the multicritical point. Note
that the scale for the up-zero-down phase has been magnified 1000 times and lines have been added for visualization purposes.
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FIG. 2. Sublattice magnetizations for T = 3. The three
magnetizations are equal for large fields. The stable solutions
are indicated by the thick lines, corresponding to a first-order
phase transition.

gram has been given in the hard-spin Monte Carlo work
of Netz and Berker [2]. The accuracy of our method of
solution results in a more detailed structure in the phase
diagram. For higher magnetic field values, the magne-
tizations of the sublattices are in the same direction as
the external magnetic field. The magnitudes of three
magnetizations are equal and depend on how strong the
external magnetic field acting on the system is. The in-
teraction of a spin with the external field dominates the
phase diagram in this region. When the effect of the
external magnetic field is sufficiently small, the contribu-
tions from other interaction terms start to appear.

For temperatures greater than T' > 3.475 there is no
phase transition for any value of magnetic field. There
is a phase transition from the up-up-up phase to the up-
up-down phase for h/J < 6. This is a first-order phase
transition in the temperature interval 0 < T < 3.475
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FIG. 3. Sublattice magnetizations for different tempera-

tures during the transition from the up-up-down phase to the

up-zero-down phase. The continuous change indicates a sec-
ond-order phase transition.
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FIG. 4. Second-order transition lines for various values of
J'/J. Indicated points on the curves correspond to values
where computations were made. The boundaries meet the
zero-field line at zero temperature.

(as in Fig. 2). If we further continue to decrease the ex-
ternal magnetic field in this temperature interval, there
is a second-order phase transition from the up-up-down
phase to the up-zero-down phase. The magnitude of the
magnetization changes, as shown in Fig. 3, during this
transition. The locus of critical points for different tem-
peratures forms a second-order phase transition bound-
ary. The implication of a second-order phase transition
related to this curve is a result of the continuous bifurca-
tion of the magnetizations near the critical points. (See
Fig. 3.)

If the strength of the interlayer coupling is changed,
considering various values of J'/J, it is observed that the
second-order transition line extends up to smaller mag-
netic fields and to lower temperatures for smaller values
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FIG. 5. Spontaneous sublattice magnetizations for zero

magnetic field. The free energy corresponding to the two
different phases is also shown at the top. (The smaller val-
ues correspond to the thermodynamically stable phase.) The
up-zero-down phase is always stable for temperatures smaller
than the critical temperature.
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of J'/J (and vice versa for larger values of J'/J) com-
pared to the J'/J = 1 case. This behavior is shown
in Fig. 4. Without ferromagnetic coupling (J' = 0), the
two-dimensional antiferromagnetic triangular lattice case
is obtained, for which h = 0 corresponds to disorder [6].

The region near the point T = 3.475, h = 0 in the
phase diagram is a multicritical region. This does not
exist in two dimensions. The detailed structure of the
multicritical region obtained in the present work is dis-
played in the phase diagram. In the Monte Carlo work of
Heinonen and Petschek [4], indirect evidence for a tricrit-
ical point was found by an analysis of critical exponents.
In the hard-spin Monte Carlo mean-field work of Netz
and Berker [2], the resolution is not sufficient to identify
the tricriticality behavior.

For zero external magnetic field the magnetization
curve is shown in Fig. 5. The up-zero-down phase is
found to be stable below the critical temperature based
on free energy calculations. This is different from the
previous work [3], which suggests a transition to the up-
up-down phase above T = 2.0.
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IV. CONCLUSIONS

A new second-order phase transition boundary has
been observed with the help of the accurate closed form
solutions of the hard-spin mean-field equations. The be-
havior of this transition is examined by looking at the
various strength of the ferromagnetic coupling between
the layers. In the limiting case, results corresponding to
the two-dimensional triangular antiferromagnetic system
are obtained. A detailed structure of the multicritical
region, within the hard-spin mean-field approximation,
was also presented. For zero magnetic field, free energy
calculations show that the up-zero-down phase is ther-
modynamically stable below the critical temperature.

While our manuscript was in review, we were informed
of a thesis [7] which contains some results consistent with
those reported in this work.
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